青少年喜欢的科技前研:“善解人意”的智能材料

1992年9月22日,美国阿拉巴马州铁路桥突然崩塌;90年代中期,韩国汉城有一座大型公路桥也出现同样事故……由此使人们担心,世界上的其他桥梁是不是哪一天也会突然崩塌呢?人们的这种担心并非多余,这是因为一桥梁无论是由何种材料建成的,它都有一定的使用年限。但是,所有桥梁的使用年限未必都相同。正如预料人的寿命一样,人们无法精确预测某一座桥的使用年限。如果把还能使用的桥梁毁了去造新的桥,那样做固然保险,但却未免太可惜。假如确信还能使用,说不定某一天却突然损坏,这样就将造成无法挽救的惨祸。因此,无论如何得有一个好办法,以便来检查、确定某座桥是可以使用呢,还是不久就要损坏。

1985年8月,由日本羽田机场飞往大阪的一架大型客机在群马县某山麓坠毁。后经查明,事故原因系由于由飞机后部隔板上裂缝泄漏的空气造成的冲击波把尾翼刮跑所引起的。那么,为什么事先没有发现这个裂缝呢?要是世界上的一些桥梁也存在着没有发现的裂缝而一旦发生崩塌呢?每念至此,不禁令人们不寒而栗。科学技术发展到今天,连这等重要的事都不能应付,着实叫人担心。如果桥梁或飞机也能发出“疲劳了,似乎马上就要损坏了”的某种信号,人们便可有针对性地进行修理或更换零部件。假如要到发生致命性破坏时才发出信号,那就太晚了。

20世纪90年代初,在美国弗吉尼亚理工学院和弗吉尼亚州立大学挂出了一个“智能材料研究中心”的牌子。科学家们正在研究各种办法,试图使飞机上的关键结构具有自己的“神经系统”、“肌肉”和“大脑”,使它们能感觉到即将出现的故障,并及时向飞行员发出警报。他们设想的办法是,在高性能的复合材料中嵌入细小的光纤,这种纵横交错布满在复合材料中的光纤就能像“神经”那样感受到机翼上受到的不同压力。这是因为通过测量光纤传输光时的各种变化,就可测出飞机机翼承受的不同压力。在极端严重的情况下,光纤会断裂,光传输就会中断,于是就能发出即将出现事故的警告。

这家“智能材料研究中心”的科学家还研究一种能自动减弱某些振动的飞机座舱壁智能材料,以便使飞机能安全、平稳地飞行。他们采用的方法是,利用装在机舱壁内的压电材料,使舱壁振动的方向正好和原来的振动方向相反,这样就等于消除了座舱壁和窗框产生疲劳断裂的根源。

但是,科学家们当务之急是开发出能对桥梁、建筑物和飞机机体等人类生活中造价高昂的物体结构受到的破坏发出早期警报的智能系统。而这些智能系统需要使用不同功能的智能材料。这些智能材料有三种基本类型:

(1)由遇到电和磁场后能够扩大、缩小或弯曲的物质构成的,如陶瓷或薄膜等压电材料。它们受到挤压后会产生电压,或者反过来说,在施加电压时会发生弯曲。这种材料的灵敏度很高,甚至用压电聚合物或凝胶制成的人造肌肉和皮肤已能在试验中“读出”盲文。(2)压电材料虽然能在千分之几秒内作出反应,但它们的大小、长短变化有限。因此,科学家将压电材料和叫做“形状记忆合金”的第二类智能材料搭配起来使用。这样,它们即使在变形程度达到15%的情况下,也能“记住”先前的外形,通过加热即可恢复。(3)第三类智能材料包括电或磁的流变体。这种神奇的液体在遇到电流或磁场时会改变它的流动性能。当它处于常态下,可以毫不费力地用勺子搅动;但是当其中有电流穿过时,它会突然间变得像混凝土一样黏稠。利用这种液体的如此奇特性能,可以制造出新型的汽车悬架和传动装置,以及减振系统和可变阻力的键身器械。

当前,科学家们正在研制新的智能材料,并能使它们与有生命的物体一样敏感。他们希望给从墙壁到飞机机翼的所有物体装上用特殊材料制成的眼晴、大脑和肌肉。

智能材料的潜力很大,应用还在不断扩展。例如,可将智能材料用来建造工厂的烟囱,当烟囱排放的烟气超过污染规定时它就改变颜色,从而监视对大气的污染。又如,在修筑冬天结冰的路面时加入智能材料,这种公路一旦结冰,路面就会变色,以提醒司机行车注意。

在未来的新世纪中,智能材料将会大放异彩,创造出人间的奇迹。

相关推荐文章:青少年喜欢的科技前研:能导电的塑料 一般认为,塑料是一种很不错的电绝缘体。的确,绝大部分的塑料都具有优异的电绝缘性能,因此,你在家里可以见到塑料做成的电线包覆、插座、插头以及电器外壳等。如果塑料能导电,那么,我们当中有许多人不就随时有触电的可能?! 但是,在这一般认为不能导电的塑料家族中,却出现了一批让人看不懂的新成员,这就是“能导电的塑料”。 20世纪70年代初,在日本东京技术学院的一个实验室里,有一名研究生想利用普通乙快制造一种叫做聚乙炔的塑料。这种塑料是一种黑色的粉末,在1955年首先合成,但是,没有人了解它更详细的情况。这位研究生在70年代所…青少年喜欢的科技前研:“挑战钢铁”的工程塑料 一般的塑料很轻,但强度还是比钢铁差。可是塑料易于成型的优点,吸引了机械制造业的工程师。比如,有的金属部件,因形状复杂,往往需要用几个零件组成。而若采用塑料,就可以运用模压技术,一次就能制造出复杂的组合件,还不需要像金属那样进行第二次加工,大大降低了制造成本。在这样的背景下,美国的杜邦公司在1960年提出了让塑料“向钢铁挑战”的口号。 从此,开始出现了所谓“工程塑料”这一塑料新品种。经过20多年的努力,在80年代出现了以金属为挑战对象的庞大的工程塑料系列。 工程塑料的特点是,它能充当受力的结构件,能长期保持尺寸稳定,…青少年喜欢的科技前研:液体磁铁 呈固态的磁铁人们并不陌生,然而,现代科学技术却创造了一种全新的材料——液体磁铁。 液体磁铁中的“液体”,是一些尺寸为0.1-1.5微米的铁磁微粒。把它掺人液体中,并采取措施使这些微粒均匀地悬浮于液体之中,就形成了液体磁铁。液体磁铁的性能极其稳定,即使连续工作几千小时或在超重的情况下,它也不会分崩离析。 大家知道,凡是机械装置都要使用润滑剂来减少摩探。但是,假如采用液体磁铁润滑油,便可以避免通常轴承在油中“游泳”的情况。这样既可减少摩擦,文可提高轴承的使用寿命,而且机械部件还不会产生噪音。此外,液体磁铁还具有更为广阔…青少年喜欢的科技前研:走进超导世界 超导材料是一种没有电阻的材料,既能节约能量,减少电能因电阻而消耗的能量,还能把电流储存起来,供急需时使用。自从世界上以电力作为主要动力以来,就遇到两个令人头痛的问题,一是在输送电流时,不少电力因导线有电阻而发热,白白损失了相当的能量。另一个问题就是,白天的电力常常严重不足。而深夜的电力又大大富余,搞得发电机常常白天超负荷运转,深夜时却空转,电力白白浪费了。能不能把夜间富余的电力储存起来用以弥补白天电力不足的难题呢? 自从有了超导材料以来,解决这个问题就大有希望了。超导材料是怎么发现的呢?那是1911年,许多科学家发…青少年喜欢的科技前研:最硬的人工合成材料 1993年7月,美国哈佛大学传出轰动性的科技新闻:利用激光溅射技术研制成功了氮化碳薄膜。这种具有β-C3N4结构的新材料的晶体硬度超过了目前世界上最硬的金刚石晶体,成为首屈一指的超硬新材料,引起了全世界科学界和工程技术界的强烈反响和巨大震动。 制备氮化碳的实验是在1989年首先从理论上预言4年之后获得成功的。科学家在分析一系列超硬材料结构,如最硬的材料金刚石,体积弹性模量B高达435吉帕,立方氮化硼B=369吉帕,以及硬度相对较低的碳化硅(SiC)、碳化硼(B4C)和氮化硅(Si3N4)等超硬材料后,发现其中β-S…

未经允许不得转载:全书网 » 青少年喜欢的科技前研:“善解人意”的智能材料

赞 (0)